以人为本的人工智能考虑了人工智能表现的经验。尽管丰富的研究一直在通过全自动或弱监督学习来帮助AI实现超人类的表现,但较少的努力正在尝试AI如何量身定制人类对人类首选技能水平的限制。在这项工作中,我们指导课程加强学习结果朝着首选的绩效水平,通过从人类的决策过程中学习而不是太困难也不容易。为了实现这一目标,我们开发了一个便携式交互式平台,使用户能够通过操纵任务难度,观察性能并提供课程反馈来在线与代理商进行交互。我们的系统高度可行,使人类可以训练大规模的增强学习应用程序,这些学习应用需要数百万没有服务器的样品。结果证明了互动课程对涉及人类在环的增强学习的有效性。它显示强化学习绩效可以成功地与人类所需的难度水平同步调整。我们认为,这项研究将为实现流动和个性化的适应性困难打开新的大门。
translated by 谷歌翻译
视觉语言预处理框架中的语言方式是天生离散的,在语言词汇中赋予每个单词是语义含义。相比之下,视觉方式本质上是连续和高维的,这可能禁止视觉和语言方式之间的对齐和融合。因此,我们建议通过联合学习一本赋予每个视觉令牌语义的代码手册来“离散”视觉表示。然后,我们利用这些离散的视觉语义作为自我监督的基础真相来构建我们的蒙版图像建模目标,这是蒙版语言建模的对应物,证明了语言模型成功。为了优化代码簿,我们扩展了VQ-VAE的配方,该配方提供了理论保证。实验验证了我们在常见视觉基准测试中的方法的有效性。
translated by 谷歌翻译
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight, which uses photon time-of-flight information encoded in light after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is of high possibility to be degraded due to noises and distortions. In this paper, we propose two novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (i.e., signal and object)-domain curvature regularization model. Fast numerical optimization algorithms are developed relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, which are further accelerated by GPU implementation. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. All our codes and data are available at https://github.com/Duanlab123/CurvNLOS.
translated by 谷歌翻译
The node-place model has been widely used to classify and evaluate transit stations, which sheds light on individual travel behaviors and supports urban planning through effectively integrating land use and transportation development. This article adapts this model to investigate whether and how node, place, and mobility would be associated with the transmission risks and presences of the local COVID-19 cases in a city. Similar studies on the model and its relevance to COVID-19, according to our knowledge, have not been undertaken before. Moreover, the unique metric drawn from detailed visit history of the infected, i.e., the COVID-19 footprints, is proposed and exploited. This study then empirically uses the adapted model to examine the station-level factors affecting the local COVID-19 footprints. The model accounts for traditional measures of the node and place as well as actual human mobility patterns associated with the node and place. It finds that stations with high node, place, and human mobility indices normally have more COVID-19 footprints in proximity. A multivariate regression is fitted to see whether and to what degree different indices and indicators can predict the COVID-19 footprints. The results indicate that many of the place, node, and human mobility indicators significantly impact the concentration of COVID-19 footprints. These are useful for policy-makers to predict and monitor hotspots for COVID-19 and other pandemics transmission.
translated by 谷歌翻译
In this paper, we target at the problem of learning a generalizable dynamic radiance field from monocular videos. Different from most existing NeRF methods that are based on multiple views, monocular videos only contain one view at each timestamp, thereby suffering from ambiguity along the view direction in estimating point features and scene flows. Previous studies such as DynNeRF disambiguate point features by positional encoding, which is not transferable and severely limits the generalization ability. As a result, these methods have to train one independent model for each scene and suffer from heavy computational costs when applying to increasing monocular videos in real-world applications. To address this, We propose MonoNeRF to simultaneously learn point features and scene flows with point trajectory and feature correspondence constraints across frames. More specifically, we learn an implicit velocity field to estimate point trajectory from temporal features with Neural ODE, which is followed by a flow-based feature aggregation module to obtain spatial features along the point trajectory. We jointly optimize temporal and spatial features by training the network in an end-to-end manner. Experiments show that our MonoNeRF is able to learn from multiple scenes and support new applications such as scene editing, unseen frame synthesis, and fast novel scene adaptation.
translated by 谷歌翻译
In this paper, we propose a large-scale language pre-training for text GENeration using dIffusion modEl, which is named GENIE. GENIE is a pre-training sequence-to-sequence text generation model which combines Transformer and diffusion. The diffusion model accepts the latent information from the encoder, which is used to guide the denoising of the current time step. After multiple such denoise iterations, the diffusion model can restore the Gaussian noise to the diverse output text which is controlled by the input text. Moreover, such architecture design also allows us to adopt large scale pre-training on the GENIE. We propose a novel pre-training method named continuous paragraph denoise based on the characteristics of the diffusion model. Extensive experiments on the XSum, CNN/DailyMail, and Gigaword benchmarks shows that GENIE can achieves comparable performance with various strong baselines, especially after pre-training, the generation quality of GENIE is greatly improved. We have also conduct a lot of experiments on the generation diversity and parameter impact of GENIE. The code for GENIE will be made publicly available.
translated by 谷歌翻译
Structured tabular data exist across nearly all fields. Reasoning task over these data aims to answer questions or determine the truthiness of hypothesis sentences by understanding the semantic meaning of a table. While previous works have devoted significant efforts to the tabular reasoning task, they always assume there are sufficient labeled data. However, constructing reasoning samples over tables (and related text) is labor-intensive, especially when the reasoning process is complex. When labeled data is insufficient, the performance of models will suffer an unendurable decline. In this paper, we propose a unified framework for unsupervised complex tabular reasoning (UCTR), which generates sufficient and diverse synthetic data with complex logic for tabular reasoning tasks, assuming no human-annotated data at all. We first utilize a random sampling strategy to collect diverse programs of different types and execute them on tables based on a "Program-Executor" module. To bridge the gap between the programs and natural language sentences, we design a powerful "NL-Generator" module to generate natural language sentences with complex logic from these programs. Since a table often occurs with its surrounding texts, we further propose novel "Table-to-Text" and "Text-to-Table" operators to handle joint table-text reasoning scenarios. This way, we can adequately exploit the unlabeled table resources to obtain a well-performed reasoning model under an unsupervised setting. Our experiments cover different tasks (question answering and fact verification) and different domains (general and specific), showing that our unsupervised methods can achieve at most 93% performance compared to supervised models. We also find that it can substantially boost the supervised performance in low-resourced domains as a data augmentation technique. Our code is available at https://github.com/leezythu/UCTR.
translated by 谷歌翻译
Making sense of multiple modalities can yield a more comprehensive description of real-world phenomena. However, learning the co-representation of diverse modalities is still a long-standing endeavor in emerging machine learning applications and research. Previous generative approaches for multimodal input approximate a joint-modality posterior by uni-modality posteriors as product-of-experts (PoE) or mixture-of-experts (MoE). We argue that these approximations lead to a defective bound for the optimization process and loss of semantic connection among modalities. This paper presents a novel variational method on sets called the Set Multimodal VAE (SMVAE) for learning a multimodal latent space while handling the missing modality problem. By modeling the joint-modality posterior distribution directly, the proposed SMVAE learns to exchange information between multiple modalities and compensate for the drawbacks caused by factorization. In public datasets of various domains, the experimental results demonstrate that the proposed method is applicable to order-agnostic cross-modal generation while achieving outstanding performance compared to the state-of-the-art multimodal methods. The source code for our method is available online https://anonymous.4open.science/r/SMVAE-9B3C/.
translated by 谷歌翻译
The dual-encoder has become the de facto architecture for dense retrieval. Typically, it computes the latent representations of the query and document independently, thus failing to fully capture the interactions between the query and document. To alleviate this, recent work expects to get query-informed representations of documents. During training, it expands the document with a real query, while replacing the real query with a generated pseudo query at inference. This discrepancy between training and inference makes the dense retrieval model pay more attention to the query information but ignore the document when computing the document representation. As a result, it even performs worse than the vanilla dense retrieval model, since its performance depends heavily on the relevance between the generated queries and the real query. In this paper, we propose a curriculum sampling strategy, which also resorts to the pseudo query at training and gradually increases the relevance of the generated query to the real query. In this way, the retrieval model can learn to extend its attention from the document only to both the document and query, hence getting high-quality query-informed document representations. Experimental results on several passage retrieval datasets show that our approach outperforms the previous dense retrieval methods1.
translated by 谷歌翻译
In this work, we study the black-box targeted attack problem from the model discrepancy perspective. On the theoretical side, we present a generalization error bound for black-box targeted attacks, which gives a rigorous theoretical analysis for guaranteeing the success of the attack. We reveal that the attack error on a target model mainly depends on empirical attack error on the substitute model and the maximum model discrepancy among substitute models. On the algorithmic side, we derive a new algorithm for black-box targeted attacks based on our theoretical analysis, in which we additionally minimize the maximum model discrepancy(M3D) of the substitute models when training the generator to generate adversarial examples. In this way, our model is capable of crafting highly transferable adversarial examples that are robust to the model variation, thus improving the success rate for attacking the black-box model. We conduct extensive experiments on the ImageNet dataset with different classification models, and our proposed approach outperforms existing state-of-the-art methods by a significant margin. Our codes will be released.
translated by 谷歌翻译